The Role of the N-Domain in the ATPase Activity of the Mammalian AAA ATPase p97/VCP*
نویسندگان
چکیده
p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of missense mutations are located at the N-domain D1 interface. Structure-based predictions suggest that such mutations affect the interaction of the N-domain with D1. Here we have tested ten major inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia-linked mutants for ATPase activity and found that all have increased activity over the wild type, with one mutant, p97(A232E), having three times higher activity. Further mutagenesis of p97(A232E) shows that the increase in ATPase activity is mediated through D2 and requires both the N-domain and a flexible ND1 linker. A disulfide mutation that locks the N-domain to D1 in a coplanar position reversibly abrogates ATPase activity. A cryo-EM reconstruction of p97(A232E) suggests that the N-domains are flexible. Removal of the C-terminal region also reduces ATPase activity. Taken together, our data suggest that the conformation of the N-domain in relation to the D1-D2 hexamer is directly linked to ATP hydrolysis and that the C-terminal region is required for hexamer stability. This leads us to propose a model where the N-domain adopts either of two conformations: a flexible conformation compatible with ATP hydrolysis or a coplanar conformation that is inactive.
منابع مشابه
ATP Binding to p97/VCP D1 Domain Regulates Selective Recruitment of Adaptors to Its Proximal N-Domain
p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor pro...
متن کاملRole of the D1-D2 Linker of Human VCP/p97 in the Asymmetry and ATPase Activity of the D1-domain
Human AAA(+) protein p97 consists of an N-domain and two tandem ATPase domains D1 and D2, which are connected by the N-D1 and the D1-D2 linkers. Inclusion of the D1-D2 linker, a 22-amino acid peptide, at the end of p97 N-D1 truncate has been shown to activate ATP hydrolysis of its D1-domain, although the mechanism of activation remains unclear. Here, we identify the N-terminal half of this link...
متن کاملAAA ATPase p97/VCP interacts with gp78: a ubiquitin ligase for ER-associated degradation Running title: p97/VCP and gp78 interaction in ERAD
Abbreviations used are: AAA ATPase: ATPase associated with various cellular activities; VCP: valosin-containing protein; ER: endoplasmic reticulum; ERAD: ERassociated degradation; NZF: Npl4 zinc finger; UBA domain: Ubiquitin-associated domain; GST: glutathione S-transferase; HA: hemagglutinin; IB: immunoblotting; IP: immunoprecipitation; RNAi: RNA interference; siRNA: small interference RNA; RI...
متن کاملStructural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47.
The AAA ATPase p97/VCP is involved in many cellular events including ubiquitin-dependent processes and membrane fusion. In the latter, the p97 adaptor protein p47 is of central importance. In order to provide insight into the molecular basis of p97 adaptor binding, we have determined the crystal structure of p97 ND1 domains complexed with p47 C-terminal domain at 2.9 A resolution. The structure...
متن کاملThe AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism.
The AAA ATPase p97/VCP forms complexes with different adapters to fulfill distinct cellular functions. We analyzed the structural organization of the Ufd1-Npl4 adapter complex and its interaction with p97 and compared it with another adapter, p47. We found that the binary Ufd1-Npl4 complex forms a heterodimer that cooperatively interacts with p97 via a bipartite binding mechanism. Binding site ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 287 شماره
صفحات -
تاریخ انتشار 2012